Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional (13)C solid-state nuclear magnetic resonance spectroscopy.

نویسندگان

  • Tuo Wang
  • Andre Salazar
  • Olga A Zabotina
  • Mei Hong
چکیده

The polysaccharide structure and dynamics in the primary cell wall of the model grass Brachypodium distachyon are investigated for the first time using solid-state nuclear magnetic resonance (NMR). While both grass and non-grass cell walls contain cellulose as the main structural scaffold, the former contains xylan with arabinose and glucuronic acid substitutions as the main hemicellulose, with a small amount of xyloglucan (XyG) and pectins, while the latter contains XyG as the main hemicellulose and significant amounts of pectins. We labeled the Brachypodium cell wall with (13)C to allow two-dimensional (2D) (13)C correlation NMR experiments under magic-angle spinning. Well-resolved 2D spectra are obtained in which the (13)C signals of cellulose, glucuronoarabinoxylan (GAX), and other matrix polysaccharides can be assigned. The assigned (13)C chemical shifts indicate that there are a large number of arabinose and xylose linkages in the wall, and GAX is significantly branched at the developmental stage of 2 weeks. 2D (13)C-(13)C correlation spectra measured with long spin diffusion mixing times indicate that the branched GAX approaches cellulose microfibrils on the nanometer scale, contrary to the conventional model in which only unbranched GAX can bind cellulose. The GAX chains are highly dynamic, with average order parameters of ~0.4. Biexponential (13)C T1 and (1)H T1ρ relaxation indicates that there are two dynamically distinct domains in GAX: the more rigid domain may be responsible for cross-linking cellulose microfibrils, while the more mobile domain may fill the interfibrillar space. This dynamic heterogeneity is more pronounced than that of the non-grass hemicellulose, XyG, suggesting that GAX adopts the mixed characteristics of XyG and pectins. Moderate differences in cellulose rigidity are observed between the Brachypodium and Arabidopsis cell walls, suggesting different effects of the matrix polysaccharides on cellulose. These data provide the first molecular-level structural information about the three-dimensional organization of the polysaccharides in the grass primary wall.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls.

Until recently, the 3D architecture of plant cell walls was poorly understood due to the lack of high-resolution techniques for characterizing the molecular structure, dynamics, and intermolecular interactions of the wall polysaccharides in these insoluble biomolecular mixtures. We introduced multidimensional solid-state NMR (SSNMR) spectroscopy, coupled with (13)C labelling of whole plants, to...

متن کامل

Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis Primary Cell Walls: Evidence from Solid-State Nuclear Magnetic Resonance.

The structural role of pectins in plant primary cell walls is not yet well understood because of the complex and disordered nature of the cell wall polymers. We recently introduced multidimensional solid-state nuclear magnetic resonance spectroscopy to characterize the spatial proximities of wall polysaccharides. The data showed extensive cross peaks between pectins and cellulose in the primary...

متن کامل

Probing the molecular architecture of Arabidopsis thaliana secondary cell walls using two- and three-dimensional (13)C solid state nuclear magnetic resonance spectroscopy.

The plant secondary cell wall is a thickened polysaccharide and phenolic structure, providing mechanical strength to cells, particularly in woody tissues. It is the main feedstock for the developing bioenergy and green chemistry industries. Despite the role that molecular architecture (the arrangement of biopolymers relative to each other, and their conformations) plays in dictating biomass pro...

متن کامل

Pectin-cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance.

The primary cell wall of higher plants consists of a mixture of polysaccharides whose spatial proximities and interactions with each other are not well understood. We recently obtained the first two-dimensional (2D) and three-dimensional high-resolution magic-angle-spinning (13)C solid-state nuclear magnetic resonance spectra of the uniformly (13)C-labeled primary cell wall of Arabidopsis thali...

متن کامل

High-resolution characterization of liquid-crystalline [60]fullerenes using solid-state nuclear magnetic resonance spectroscopy.

Liquid-crystalline materials containing fullerenes are valuable in the development of supramolecular switches and in solar cell technology. In this study, we characterize the liquid-crystalline and dynamic properties of fullerene-containing thermotropic compounds using solid-state natural abundance (13)C NMR experiments under stationary and magic angle spinning sample conditions. Chemical shift...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 53 17  شماره 

صفحات  -

تاریخ انتشار 2014